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LEARNING OBJECTIVES

•  Data Analytics in AT: 

–  TBO Flight Operation case

–  Flight Incidents case

–  FDM based flight performance analysis

–  Delay Propagation in ATM Network



BACKGROUND

*Loss of control (L-CIF) usually occurs because the aircraft enters 
a flight regime which is outside its normal envelope, usually, but 
not always at a high rate, thereby introducing an element of 
surprise for the flight crew involved.

*Controlled flight into terrain (CFIT) describes an accident in 
which an airworthy aircraft, under pilot control, is unintentionally 
flown into the ground, a mountain, water, or an obstacle.

*Runway excursion is overrun off the runway surface



BACKGROUND

•  2009-2013 Aircraft Accidents



CONTRIBUTING FACTORS



INCIDENT ANALYSIS
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FLIGHT DATA RECORDING
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PREDICTIVE INCIDENT ANALYSIS
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HARD LANDING
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PREDICTIVE INCIDENT ANALYSIS



CAUSE-CONSEQUENCE CHAINS 
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ASKING RIGHT QUESTION



DISTRIBUTION FIT

Touchdown distances of 7263 landings in Frankfurt and Munich



•  to quantify the probability of these hazards
•  which happen quite often 
•  use them to quantify the effect on the incident probability



CONDITIONAL PROBABILITY

•  “Chance” of an event given that something is true
–  Notation:

–   
–  probability of event a, given b is true

( )bap



CONDITIONAL PROBABILITY EXAMPLE

•  Diagnosis using a clinical test 
–  Sample Space = all patients tested

• Event A:  Subject has disease
• Event B:  Test is positive

•  Interpret: 
–  Probability patient has disease and positive test (correct!)

–  Probability patient has disease BUT negative test (false negative)             

–  Probability patient has no disease BUT positive test (false positive)

–  Probability patient has disease given a positive test

–  Probability patient has disease given a negative test
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CONDITIONAL PROBABILITY EXAMPLE

•  If only data we have is B or not B, what can we say 
about A being true?
–  Not as simple as positive = disease, negative = healthy
–  Test is not infallible!

•  Probability depends on intersection of A and B

•  Must Examine independence
–  Does p(A) depend on p(B)?
–  Does p(B) depend on p(A)?
–  Events are dependant

p A B( ) =
p A∩B( )
p B( )



INDEPENDENCE

•  Do A and B depend on one another?
–  Yes!  B more likely to be true if A.
–  A should be more likely if B.

•  If independent 

•  If dependent

( ) ( ) ( )
( ) ( ) ( ) ( )BpABpApBAp

BpApBAp
==

⋅=∩

p A∩B( ) = p B A( ) ⋅ p A( )



LAW OF TOTAL PROBABILITY & BAYES RULE

•  Take events Ai for I = 1 to k to be:
–  Mutually exclusive:                               for all i,j 
–  Exhaustive:

•  For any event B on S

•  Bayes theorem follows
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NUMERICAL EXAMPLE

•  Only 1 in 1000 people have rare disease A
–  TP = .99 FP=.02
–  If one randomly tested individual is positive, what is the 

probability they have the disease
•  Label events:

–  A = has disease Ao = no disease
–  B = Positive test result

•  Examine probabilities
–  p(A)  = .001 
–  p(Ao)= .999
–  p(B|A)  = .99
–  p(B|Ao)= .02
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NUMERICAL EXAMPLE

•  Examine probabilities
–  p(A)  = .001 
–  p(Ao)= .999
–  p(B|A)  = .99
–  p(B|Ao)= .02
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p(B|Ao)= .02

p(A ∩ B)  = .00099

p(Ao ∩ B)  = .01998
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MARKOV CHAINS

•  Given a sequence of n outcomes {a0, a1,..., an}
–  Where P(ax) depends only on ax-1

•  Probability of the sequence is given by the product of 
the probability of the first event with the probabilities 
of all subsequent occurrences

•  Markov chains have been explored through simulation 
(Markov Chain Monte Carlo – MCMC)
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EXAMPLES OF 3-WAY BAYESIAN NETWORKS

A CB Marginal Independence:
p(A,B,C) = p(A) p(B) p(C)



EXAMPLES OF 3-WAY BAYESIAN NETWORKS

A

CB

Conditionally independent effects:
p(A,B,C) = p(B|A)p(C|A)p(A)

B and C are conditionally independent
Given A

e.g., A is a disease, and we model 
B and C as conditionally independent
symptoms given A



EXAMPLES OF 3-WAY BAYESIAN NETWORKS

A B

C

Independent Causes:
p(A,B,C) = p(C|A,B)p(A)p(B)

“Explaining away” effect:
Given C, observing A makes B less likely
e.g., earthquake/burglary/alarm example

A and B are (marginally) independent 
but become dependent once C is known
 



EXAMPLES OF 3-WAY BAYESIAN NETWORKS

A CB Markov dependence:
p(A,B,C) = p(C|B) p(B|A)p(A)



PARAMETER ESTIMATION

34



PARAMETER SAMPLING

Uniform sampling?



PARAMETER SAMPLING

Discrepancy measures whether the right number of points fall into boxes



PARAMETER SAMPLING

Reducing the dispersion means reducing the radius of the largest empty ball



PARAMETER SAMPLING

Importance Sampling



INCIDENT DOMAIN



PROOF OF MODEL
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CHANGE MANAGEMENT
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IDENTIFYING UNKNOWNS



GAP ANALYSIS
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PREDICTIVE INCIDENT ANALYSIS


